Math 3220-1 HW 1

NAME
Due: DATE

Exercises for Section 1.1: Norm and Inner Product

1. Define the ℓ^{1}-norm on \mathbb{R}^{n} by

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x^{i}\right|
$$

and define the sup-norm on \mathbb{R}^{n} by

$$
\|x\|_{\infty}=\sup \left\{\left|x^{i}\right|\right\} .
$$

Show that these satisfy Theorem 1.
Proof.
2. Prove that $\|x\| \leq \sum_{i=1}^{n}\left|x^{i}\right|$. In other words, the usual norm is no greater than the ℓ^{1}-norm.

Proof.
3. Prove that $\|x-y\| \leq\|x\|+\|y\|$. (Compare this with part (2) of Theorem 1.) When does equality hold?
4. Prove that $|\|x\|-\|y\|| \leq\|x-y\|$.
5. The quantity $\|y-x\|$ is called the distance between x and y. Prove and interpret the "triangle inequality":

$$
\|z-x\| \leq\|z-y\|+\|y-x\| .
$$

6. Let f and g be integrable on $[a, b]$.
(a) Prove the integral version of the Cauchy-Schwarz inequality:

$$
\left|\int_{a}^{b} f g\right| \leq\left(\int_{a}^{b} f^{2}\right)^{1 / 2}\left(\int_{a}^{b} g^{2}\right)^{1 / 2}
$$

Hint: Consider separately the cases $0=\int_{a}^{b}(f-t g)^{2}$ for some $t \in \mathbb{R}$, and $0<\int_{a}^{b}(f-t g)^{2}$ for all $t \in \mathbb{R}$.
(b) If equality holds, must $f=t g$ for some $t \in \mathbb{R}$? What if f and g are continuous?
(c) Show that the Cauchy-Schwarz inequality is a special case of (a).
7. A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is norm preserving if

$$
\|T(x)\|=\|x\|,
$$

for all $x \in \mathbb{R}^{n}$, and inner product preserving if

$$
\langle T x, T y\rangle=\langle x, y\rangle,
$$

for all $x, y \in \mathbb{R}^{n}$.
(a) Prove that T is norm preserving if and only if it is inner product preserving.
(b) Prove that such a linear transformation is $1-1$, and T^{-1} is norm preserving (and inner product preserving).
8. If $T: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ is a linear transformation, show that there is a number M such that $\|T(h)\| \leq M\|h\|$ for all $h \in \mathbb{R}^{m}$. Hint: Estimate $\|T(h)\|$ in terms of $\|h\|$ and the entries in the matrix for T.
9. If $x, y \in \mathbb{R}^{n}$, and $z, w \in \mathbb{R}^{m}$, show that $\langle(x, z),(y, w)\rangle=\langle x, y\rangle+\langle z, w\rangle$, and $\|(x, z)\|=\sqrt{\|x\|^{2}+\|z\|^{2}}$. Note that (x, z) and (y, w) denote points in \mathbb{R}^{n+m}.
10. If $x, y \in \mathbb{R}^{n}$, then x and y are called perpendicular (or orthogonal), and we write $x \perp y$, if $\langle x, y\rangle=0$. If $x \perp y$, prove that $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.

Exercises for Section 1.2: More Topology: Open and Closed Sets in \mathbb{R}^{n}

1. Prove that the union of any (even infinite) number of open sets is open. Prove that the intersection of two (and hence of finitely many) open sets is open. Give a counterexample for the intersection of infinitely many open sets.
2. If $A \subset B \subset \mathbb{R}^{n}$, prove that

$$
\operatorname{cl} A \subset \operatorname{cl} B, \quad \text { and } \quad \operatorname{int} A \subset \operatorname{int} B
$$

3. Prove that if B is an open subset of A, then $B \subset \operatorname{int}(A)$. Note that this says that $\operatorname{int}(A)$ is the largest open subset of A.
4. Prove that the n-dimensional ball centered at a of radius r,

$$
B^{n}(a ; r)=\left\{x \in \mathbb{R}^{n}:\|x-a\|<r\right\}
$$

is open.
5. Find the interior, exterior, and boundary of the sets:

$$
\begin{gathered}
B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\} \\
S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\} \\
\mathbb{Q}^{n}=\left\{x \in \mathbb{R}^{n}: \text { each } x^{i} \text { is rational }\right\} .
\end{gathered}
$$

Solution.

6. If $A \subset[0,1]$ is the union of open intervals $\left(a_{i}, b_{i}\right)$ such that each rational number in $(0,1)$ is contained in some $\left(a_{i}, b_{i}\right)$, show that $\partial A=[0,1]-A$.
7. If A is a closed set that contains every rational number $r \in[0,1]$, show that $[0,1] \subset A$.
8. Graph generic open balls in \mathbb{R}^{2} with respect to each of the "non-Euclidean" norms, $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$. What shapes are they?

Solution.

