TABLE S1: Estimated critical screening parameters of Hulthén potential, for some high-lying states having $n=6-10, \ell=0-9$, along with literature results.

State		δ_c	State		δ_c
	PR^{\dagger}	Literature		PR^{\dagger}	Literature
6s	0.0555555	0.055556^a	6g	0.04058464	$0.040585^a, 0.04058464^b$
7s	0.0408163	0.040816^a	7g	0.03135273	$0.031353^{a}, \! 0.03135273^{b}$
8s	0.0312499	0.031250^a	8g	0.0249258	$0.024926^a, \! 0.0249258^b$
9s	0.0246913	0.024691^a	9g	0.0202774	$0.020278^a,\!0.0202774^b$
10s	0.0199999	0.020000^a	10g	0.0168095	$0.016810^a, 0.0168095^b$
6p	0.0515788	$0.051579^a, 0.051536^b$	6h	0.03750415	$0.037504^{a}, \! 0.03750415^{b}$
7p	0.0383973	$0.038398^a, 0.038365^b$	7h	0.02928423	$0.029284^{a}, \! 0.02928423^{b}$
8p	0.0296803	$0.029681^{a}, \! 0.029654^{b}$	8h	0.02347828	$0.023478^{a}, \! 0.02347828^{b}$
9p	0.0236212	$0.023621^{a}, 0.023599^{b}$	9h	0.0192297	$0.019230^a,\!0.0192297^b$
10p	0.0192398	$0.019240^a, 0.019222^b$	10h	0.0160298	$0.016030^a, 0.0160298^b$
6d	0.04766137	$0.047661^a, 0.0476580^b$	7i	0.02737901	0.027379^{a}
7d	0.0359476	$0.035948^a, 0.0359445^b$	8i	0.02212412	0.022124^{a}
8d	0.0280578	$0.028058^a,\!0.0280547^b$	9i	0.0182370	0.018237^a
9d	0.0224966	$0.022497^a,\!0.0224936^b$	10i	0.0152833	0.015283^{a}
10d	0.0184326	$0.018433^a, 0.0184299^b$	8k	0.02086426	0.020864^{a}
6f	0.04397459	$0.043975^{a},\!0.04397452^{b}$	9k	0.01730265	0.017303^{a}
7f	0.03358103	$0.033581^a,\!0.03358094^b$	10k	0.0145735	0.014573^a
8f	0.0264591	$0.026459^a,\!0.02645904^b$	9l	0.01642647	0.016427^a
9f	0.0213719	$0.021372^a, 0.02137183^b$	10l	0.0139017	0.013902^a
10f	0.0176149	$0.017615^{a}, 0.0176147^{b}$	10m	0.0132679	0.013268^{a}

^aRef. [1].

^bRef. [2].

[†]PR implies Present Result.

TABLE S2: Estimated critical screening parameters of Yukawa potential, for some high-lying states having $n=6-10, \ell=0-9$, along with literature results. PR implies Present Result.

State	δ_c		State	δ_c	
	PR	Literature [3]		PR	Literature [3]
$\overline{6s}$	0.035182	0.03518	6g	0.023799103	0.02380
7s	0.025874	0.0258	7g	0.018646215	0.01864
8s	0.019824	0.0198	8g	0.014980862	0.01498
9s	0.015672	0.0156	9g	0.012286145	0.01228
10s	0.012699		10g	0.010250170	
6p	0.032174932	0.03217	6h	0.021524548	0.02152
7p	0.024047639	0.0240	7h	0.017095135	0.01709
8p	0.018640705	0.01864	8h	0.013883519	0.01388
9p	0.014865869	0.01486	9h	0.011485753	0.01148
10p	0.012128229		10h	0.009651169	
6d	0.029166650	0.02916	7i	0.015691083	0.01569
7d	0.022161826	0.02216	8i	0.012871464	0.01287
8d	0.017390648	0.01739	9i	0.010736147	0.01073
9d	0.013999880	0.01400	10i	0.009082952	
10d	0.011506513		8k	0.011944531	0.01194
6f	0.026350671	0.02635	9k	0.010039758	0.01003
7f	0.020342170	0.02034	10k	0.008548707	
8f	0.016156534	0.01615	9l	0.009395999	0.00939
9f	0.013129670	0.01313	10l	0.008049285	
10f	0.010872967		10m	0.007584125	

TABLE S3: Estimated critical screening parameters of ECSC potential, for some high-lying states having $n=6-10, \ell=0-9$, along with literature results. PR implies Present Result.

State	δ_c		State		δ_c		
	PR§	Literature		PR§	Literature		
6s	0.01787828	$0.01787828^a, 0.01787790^b$	6g	0.0160994830	$0.01609948^a, 0.016099483^b$		
7s	0.01312287	$0.01312287^a, 0.01312275^b$	7g	0.0121108414	$0.01211084^a, 0.012110841^b$		
8s	0.010041420	$0.01004142^a, 0.01004138^b$	8g	0.0094255746	$0.00942557^a, 0.009425574^b$		
9s	0.007930924		9g	0.0075357713			
10s	0.0064223221		10g	0.0061576653			
6p	0.0176520702	$0.01765207^a,\!0.0176520692^b$	6h	0.0154554769	$0.01545548^a, 0.015455476^b$		
7p	0.0130010639	$0.01300107^a, 0.013001062^b$	7h	0.0117204888	$0.01172049^a, 0.011720488^b$		
8p	0.0099700872	$0.00997009^a, 0.009970085^b$	8h	0.0091765721	$0.00917657^a, 0.009176572^b$		
9p	0.0078864055		9h	0.0073701634			
10p	0.0063931148		10h	0.0060436156			
6d	0.0172429036	$0.01724290^a, 0.017242903^b$	7i	0.0113144150	$0.01131442^a, 0.011314415^b$		
7d	0.0127747014	$0.01277470^a, 0.012774701^b$	8i	0.0089121305	$0.00891213^a, 0.008912130^b$		
8d	0.0098352041	$0.00983521^a, 0.009835204^b$	9i	0.0071912774			
9d	0.0078012274		10i	0.0059186845			
10d	0.0063367620		8k	0.0086398532	$0.00863985^a, 0.008639853^b$		
6f	0.0167081500	$0.01670815^{a}, 0.016708150^{b}$	9k	0.0070041846			
7f	0.0124693824	$0.01246938^a, 0.012469382^b$	10k	0.0057862828			
8f	0.0096491922	$0.00964919^a, 0.009649192^b$	9l	0.0068128353			
9f	0.0076818589		10l	0.0056491977			
10f	0.0062568394		10m	0.0055096394			

^aRef. [7]. ^bRef. [8].

TABLE S4: Eigenvalues (a.u.) of n = 3, 4 states of confined ECSC potential for $\delta = 0.02$. Numbers in the parentheses denote reference energies quoted from [9].

State	$r_c = 0.1$	$r_c = 0.5$	$r_c = 1$	$r_c = 2$	$r_c = 5$
3s	4406.1416518	170.60516396	40.883123723	9.3341469004	1.0731978420
				(9.33415)	(1.07320)
3p	2960.4823022	114.66355228	27.493994384	6.2889991502	0.7276959975
				(6.28900)	(0.72770)
3d	1644.5499223	63.180184177	14.987462939	3.3475046681	0.3490909625
				(3.34750)	(0.34909)
4s	7857.6491849	308.21724725	75.150492179	17.836089963	2.4023028763
				(17.83609)	(2.40230)
4p	5918.2028888	232.44795983	56.778032985	13.530580567	1.8504011627
				(13.53058)	(1.85040)
4d	4115.6026320	161.37700634	39.335318864	9.3341465110	1.2596272053
				(9.33415)	(1.25963)
4f	2426.4155489	94.646597432	22.915824203	5.3620893411	0.6894218988
				(5.36209)	(0.68942)
	$r_c = 10$	$r_c = 20$	$r_c = 30$	$r_c = 50$	$r_c = 100$
3s	0.1113277900	-0.0302492345	-0.0358787689	-0.0360250925	-0.0360251051
	(0.11133)			(-0.03603)	
3p	0.0691008416	-0.0319140038	-0.0358733580	-0.0359675961	-0.0359676034
	(0.06910)			(-0.03597)	
3d	0.0128160637	-0.0342064512	-0.0358194164	-0.0358506603	-0.0358506623
	(0.01282)			(-0.03585)	
4s	0.4250635505	0.0363462881	-0.0054277289	-0.0124953824	-0.0125717772
	(0.42506)			(-0.01250)	
4p	0.3359680167	0.0277302857	-0.0066764629	-0.0124281276	-0.0124857523
	(0.33597)			(-0.01243)	
4d	0.2223514916	0.0141166051	-0.0086778605	-0.0122798641	-0.0123102664
	(0.22235)			(-0.01228)	
4f	0.1081309850	-0.0003604550	-0.0106312256	-0.0120295162	-0.0120381878
	(0.10813)			(-0.01203)	

- [1] Y. P. Varshni, Phys. Rev. A 41, 4682 (1990).
- [2] M. Demiralp, Appl. Math. Comput. 168, 1380 (2005).
- [3] F. J. Rogers, H. C. Graboske Jr. and D. J. Harwood, Phys. Rev. A 1, 1577 (1970).
- [4] O. A. Gomes, H. Chacham and J. R. Mohallem, Phys. Rev. A 50, 228 (1994).
- [5] C. S. Lam and Y. P. Varshni, Phys. Rev. A 6, 1391 (1972).
- [6] P. P. Ray and A. Ray, Phys. Lett. **78A**, 443 (1980).
- [7] D. S. Singh and Y. P. Varshni, Phys. Rev. A 28, 2606 (1983).
- [8] I. Nasser, M. S. Abdelmonem and A. Abdel-Hady, Phys. Scr. 84, 045001 (2011).
- [9] S. Lumb, S. Lumb and V. Prasad, Phys. Rev. A **92**, 032505 (2014).